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STEP I 2011 Solutions

Dr Julian Gilbey, Principal Examiner (Marking)

Question 1

ay2

b
(i)  Show that the gradient of the curve % + " =1, where b # 0, is el

We begin by differentiating the equation of the curve (az~! + by~! = 1) implicitly with respect
to x, to get
dy
-2 )
—by “— =0,
Y dx

so that

giving our desired result
dy _ ay’
dr  ba?’

An alternative, but more complicated method, is to rearrange the equation first to get y in terms
of z before differentiating. We have, on multiplying by xy,

ay + b = xy, (1)
so that (x — a)y = bz, which gives
bx

x—a

y =
We can now differentiate this using the quotient rule to get

dy blx—a)—brl  —ab

de (x—a)?  (x—a)?

The challenge is now to rewrite this in the form required. We can rearrange equation (1) to get
(x —a)y = bx, so that (x — a) = bz /y. Substituting this into our expression for the derivative

then gives
dy ab aby? ay?

de — (bz/y)?2 ~  b222  ba?

as required.



STEP I 2011 Question 1 continued

b
The point (p,q) lies on both the straight line ax + by = 1 and the curve a + - =1,
x

(]
where ab # 0. Given that, at this point, the line and the curve have the same gradient,
show that p = +q.

Rearranging the equation of the straight line ax +by = 1 as y = —(§)z + % shows that its
gradient is —a/b.

Then using the above result for the gradient of the curve, we require that

aq? a

bp: b’

so ¢?/p? =1, that is p? = ¢° or p = +q.

Show further that either (a —b)?> =1 or (a +b)?> = 1.

Since (p, q) lies on both the straight line and the curve, it must satisfy both equations, so
a b
ap+bg=1 and -+ -=1.
p q

Now if p = ¢, then the first equation gives (a + b)p = 1 and the second gives (a 4+ b)/p = 1, and
multiplying these gives (a + b)? = 1.

Alternatively, if p = —q, then the first equation gives (a —b)p = 1 and the second equation gives
(a —b)/p = 1, and multiplying these now gives (a — b)? = 1.

(ii) Show that if the straight line ax + by = 1, where ab # 0, is a normal to the curve

b
g—le,the1fla2—b2:%.
Ty

We can find the derivative of this curve as above. A slick alternative is to notice that this is
identical to the above curve, but with b replaced by —b, so that

dy _ ay?
dz b2’

The gradient of the straight line is —a/b as before, so as this line is normal to the curve at the
point (p, q), say, we have
2
o (0) —
bp? b

as perpendicular gradients multiply to —1; thus a?¢?/b?p? = 1, or a?¢® = bp?.
We therefore deduce that ag = £bp, which we can divide by pg # 0 to get % = :I:g.

Now since (p, q) lies on both the straight line and the curve, we have, as before,

ap+bg=1 and
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Now if % = g, the second equation would become 0 = 1, which is impossible. So we must have

5= —g, giving
a a
—+-=1,
p P

so that % = —g = %, giving p = 2a and g = —2b.

Substituting this into the equation of the straight line yields
a.2a+b.(—2b) =1,

so that a® — b? = % as required.



Question 2

1 T
The number E is defined by E = / dz .
0 1 + a
Show that
1 ret
/ dr=e—1—F,
0 1 + x

2 .x

1
and evaluate / f dx in terms of e and E.
0

Approach 1: Using polynomial division

Using polynomial division or similar, we find that we can write

Therefore our first integral becomes
1 T 1
1
/ e dxz/(l— )ewdac
0 1 + X 0 1 + X
1 1 P
= / e“dr — / dx
0 0 1 +x

- s
=e—1—F,

as required.
We can play the same trick with the second integral, as

22 1

=x—1
1+ v +1+:13

)

so that

1 .22 1
/ re dm:/(x—1+ 1 )ezdx
0 1—1—:6 0 1+x
1 1 1 e
:/ xezdx—/ emdx—i—/ dz.
0 0 o 1+

Now we can use integration by parts for the first integral to get

1 1
/ zetdz = [xex](l) — / e’ dx
0 0

=e—(e—1)
=1.

Therefore

1 x2€z
/ de=1—-(e—1)+E=2—-e+E.
o 1+=x
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Approach 2: Substitution

We can substitute u = 1 4+ x to simplify the denominator in the integral. This gives us

1 T 2 u—1
-1
/ xe dx:/ udu
0 1+=z 1 u

2 u—1
_ €
= et — du.
1 u

The first part of this integral can be easily dealt with. The second part needs the reverse
substitution to be applied, replacing u by 1 + x, giving

T

de=e—1-F.

u712_ e
[e ]1 1+x

This is essentially identical to the first approach. The second integral follows in the same way.

Approach 3: Integration by parts

Integration by parts is trickier for this integral, as it is not obvious how to break up our integral.

We use the parts formula as written in the formula booklet: f ug—; dr = uv — f U% dzx.

There are several ways which work (and many which do not). Here is a relatively straightforward
approach. For the first integral, we take

T dv

= d _— = xz
Y 14z a dx ¢
so that d )
U
—_— = d =e”,
dr (14 x2)? an v=e
We then get

1 T z 71 1 x
/ ze dx:[xe ] _/ e e
0 1+x I+z], Jo 1+

L 1 ex
—le— [ — _du
2° /0 1+ "

The difficulty is now integrating the remaining integral. We again use parts, this time taking

dv 1
fy Z‘ d _— = —
u=e an e SESE
so that q )
U X
= d - _
dx an v 1+
This gives
1 T T 1 1 T
/e2dx:[—e ]_/_e dx
o (1+x) 1+z], o l+=z
:—%e—|—1+E.

Combining this result with the first result then gives

U oge® 1 1
/0 1+xdx:ie—(—§e—|—1+E):e—1—E.
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For the second integral, we use a similar procedure, this time taking

2
T dv
= d — =7
YTy ™ ¢

so that )

du 20+ x

_— = — d = LE.

dz (1+2)? an vee
We then get

1 2. 2,2 71 1 2\
2
/xe dx:[xe]_/(x—&-x);dx
0 1+z 1+z], Jo A+

1 9 2\ T
:5e_/ Wiﬂf);dx.
o (I+az)

The integral in the last step can be handled in several ways; the easiest is to write

20 +a®  2P4+2r41-1 1

(14xz)2 (1+x)2 N (1+ )2

and then use the earlier calculation of [e?/(1+ x)%dx to get

1$2ex 1 e”
dz == le — / t___~ 4
/o E R ( T +ap ””)

=le—[e"]p+ (—de+ 1+ E)

=—e+14+1+F
=2—-e+ F.
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Evaluate also, in terms of E¥ and e as appropriate:

11
0 [ e
0 1+.§U

This integral looks to be of a vaguely similar form, but with a more complicated exponential

part. We therefore try the substitution v = ;—i and see what we get.
1—
Ifu= J, then
14+
dﬁ_—(1+x)—(1—x)_ -2
de (14 x)? (14 2)?
so that % = —%(1 +x)2. Also, when 2 = 0, u = 1, and when = = 1, u = 0.
11—z
We can also rearrange u = 1 to get
x
I+z)u=1-2x
SO ur+zx =1—u
. . 1—u
ivin r = .
iving 1+u

Thus

eltz (§]
dz = -1 2)d
/0 (e /1 Ty 3l +a))du

1
= / %e“(l +x)du reversing the limits
0
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Evaluate also in terms of E¥ and e as appropriate:

i [ vt

Again we have a different exponent, so we try substituting v = 2, so that = = /u, while
du — 94 and so du = % Also the limits z = 1 and 2 = v/2 become u = 1 and u = 2, giving us

dz
2 et 1

_ [y
12uu

This is very similar to what we are looking for, except that it has the wrong limits and a
denominator of 2u rather than u + 1 or perhaps 2(u + 1). So we make a further substitution:
u=wv+1, so that v =u — 1 and du/dv = 1, giving us

2

V2 2w
/ e—dx: e—du
1 X 1 2u

1 ev+1
:/ 7w
0 2(v+1)

1 v
:e/ ¢ dv

2 0 'U+1
_eE
=5

where on the penultimate line we have written e’™! = e.e’ and so taken out a factor of e/2.

It is also possible to evaluate this integral more directly by substituting v = 22 — 1, so that
22 = u+ 1. The details are left to the reader.



Question 3

Prove the identity
4sin@sin(gm — 0)sin(3m 4 0) = sin36. (%)

We make use of two of the factor formulae:

2sin Asin B = cos(A — B) — cos(A + B)

2sin Acos B = sin(A + B) + sin(4A — B)
(These can be derived by expanding the right hand sides using the addition formulee, and then
collecting like terms.)

Then initially taking A = %71' —f0 and B = %7‘(‘ + 6 and using the first of the factor formulee gives

4sin@sin(3m — 0)sin(37 + ) = 2sin 6 (cos(—26) — cos(3))
= 2sinf(cos26 + 1)
= 2sinf cos 20 + sinf.

We now use the second factor formula with A = 6 and B = 260 to simplify this last expression to
(sin 36 + sin(—0)) + sin 6 = sin 36,

as required.

An alternative approach is to expand the second and third terms on the left hand side using the
addition formulee, giving:

4sin@sin(im — 0) sin(3m + 6)
= 4sin O(sin £ cos 6 — cos L7 sin 0)(sin 37 cos 6 + cos 7 sin )
= 4sin9(§ cosf — %sin@)(@ cosf + %sin@)
= 4sin6(3 cos® — 1 sin”0)

= 3sinf cos® 0 — sin® 6,
while

sin 30 = sin(260 + 0)
= sin 260 cos 6 + cos 20 sin 0
= 25inf cos? @ + (cos® § — sin? 0) sin @

= 3sin 6 cos® O — sin® 0.

Thus the required identity holds.
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(i) By differentiating (x), or otherwise, show that

cot%w—cot%w%—co‘c%wzx/ﬁ.

We can differentiate a product of several terms using the product rule repeatedly. In general,
we have

i(uth )—d—uth —|—u@wt —i—uvd—wt +
g c) = Fvwt b uwt i

In our case, we are differentiating a product of three terms, and we get
4cosOsin(3m — 0)sin(3m + 0) — 4sinf cos(3m — 0) sin(3r + 60) +
4sin @ sin(3m — 0) cos(3m + 6) = 3 cos 30.
Now we are aiming to get an expressing involving cot, so we divide this result by () to get
cot§ — cot(3m — 0) + cot(3m + 6) = 3cot 30.
We now let 6 = %ﬂ' to get
cot éﬂ' — cot %77—}— cot %7‘(’ = 3 cot %71' =3/V3=13,

and we are done.

(ii) By setting @ = ¢w—¢ in (x), or otherwise, obtain a similar identity for cos 30 and deduce
that
cot 0 cot(3m — 0) cot(3m + 6) = cot 36.

Setting 0 = %71' — ¢ in (*) as instructed gives
4sin(3m — @) sin(im + ¢) sin(37 — ¢) =sin3(gm — ¢).

To get cosines from this expression, we will need to use the identity sin(%w —x) =cosx. So we

rewrite this as
dsin(3m — (37 + ¢)) sin(37 — (37 — ¢)) sin(37 — ¢) = sin(37 — 3¢)
which allows us to apply our identity to get
4cos(3m + @) cos(3m — ¢) cos ¢ = cos 3¢,
which is a similar identity for cos 3¢. Replacing ¢ by 6 and reordering the terms in the product

gives
4cos b cos(im — 0) cos(3m + 6) = cos 36.

Now dividing this identity by (*) gives our desired identity for cot:
cot HCOt(%W —0) COt(%W + 6) = cot 36. (1)

(Note that there is no factor of 4 in this expression.)
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Show that

cosec %7‘1’ — cosec 871' -+ cosec gﬂ' = 2\/§ .

As before, we differentiate the expression (1) which we have just derived to get

— cosec? § cot(m — 0) cot(im + 0) +
cot 0 cosec®(3m — 6) cot(3m + 0) —
cot 6 COt(%T( —0) cosec2(%7r + 0) = —3cosec? 36.

When we negate this identity and then divide it by (1), we will have lots of cancellation and we
will be left with terms of the form cosec? 2/ cot x. Now

cosec? x: 1 sinx 1 2
= = — = — = 2 cosec 2z,
cotx sin“x cosx sinx cosx sin 2z

so that the division gives us

2 cosec 20 — 2 cosec 2(3m — 6) + 2 cosec 2(37 + 0) = 6 cosec 66.

To get the requested equality, we halve this identity and set 26 = %71’ so that

cosec %77 — cosec 871’ + cosec gﬂ' = 3 cosec :1,)77 =32 =2/3

B

as required.



Question 4

The distinct points P and Q, with coordinates (ap?,2ap) and (aq?,2aq) respectively, lie on
the curve y?> = 4ax. The tangents to the curve at P and () meet at the point T. Show that
T has coordinates (apq, a(p + q)) You may assume that p # 0 and q # 0.

We begin by sketching the graph (though this may be helpful, it is not required):

The equation of the curve is y?> = 4ax, so we can find the gradient of the curve by implicit
differentiation:

dy
=y
ydCL‘ a,
and thus
dy _ %
de  y’

as long as y # 0. (Alternatively, we could write x = 3?/4a and then work out dz/dy = 2y/4a;
taking reciprocals then gives us the same result.)

Therefore the tangent at the point P with coordinates (ap?,2ap) has equation

2a 9
—%ap = — (1 —
y -2 =50 (x —ap”),

which can easily be rearranged to give
2 _
z—py+ap”=0.

Since y = 0 would require p = 0, we can ignore this case, as we are assuming that p # 0. [In
fact, if y = p = 0, we can look at the reciprocal of the gradient, % = o=, and this is zero, so the
line is vertical. In this case, our equation gives x = 0, which is, indeed, a vertical line, so our

equation works even when p = 0.]

Thus the tangent through P has equation x — py + ap? = 0 and the tangent through @ has
equation x — qy + ag® = 0 likewise.

We solve these equations simultaneously to find the coordinates of T'. Subtracting them gives

(p—qy —a(p®—q°) =0.
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Since p # q, we can divide by p — ¢ to get
y—a(lp+q) =0,

so y = a(p + q) and therefore x = py — ap? = ap(p + q) — ap?® = apq.
Thus T has coordinates (apq, a(p+ q)), as wanted.

The point F' has coordinates (a,0) and ¢ is the angle TF P. Show that

pg+1
V@ +1)(? + 1)
and deduce that the line F'T' bisects the angle PF(Q).

cos ¢ =

In the triangle TF P, we can use the cosine rule to find cos ¢:

TP?=TF?+ PF? - 2.TF.PF.cos ¢,
so that
TF?+ PF? —TP?
2.TF.PF
Now using Pythagoras to find the distance between two points given their coordinates, we obtain

= (alpg - 1))* + (a(p + ¢))°

a*(p*q® — 2pq + 1+ p* + 2pq + ¢%)
(

P+ + ¢+ 1)
2+ 1)+ 1)
a(p? — 1)) + (2ap)*
= a2(p4 — 2?4+ 1+ 4p2)
=ad?(p* +2p* +1)

cos ¢ =

|
—~ Q

FP? =

TP? = (a(pg — 102))2 + (alp+q— 217))2
2

Thus
TF?+FP? —TP*=a*(p* + 1)(¢* + 1+ p* + 1 — ¢* + 2pq — p°)
= 2a%(1 4 p?*)(1 + pq)
so that
2a*(1 + p?)(1 + pq)

2a%\/(p* + 1)(¢ + 1)(p? + 1)?
1+ pg

VPP + 1D +1)

cos ¢ =

as we wanted.
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An alternative approach is to use vectors and dot products to find cos ¢. We have
FD.FT = FP.FT. cos ¢

(where the dot on the left hand side is the dot product, but on the right is ordinary multiplica-
tion), so we need only find the lengths F'P, F'T as above and the dot product. The dot product
is

FPFT = <ap2 - a) . ( (apq—a 0) = (ap?® — a)(apq — a) + 2ap.a(p + q)

2ap — 0 alp+q) —

20,2 2/.2

p” —1)(pg— 1)+ 2a°(p” + pq)
a*(p*q — p* — pg + 1 + 2p* + 2pq)

= a”(
(
2( q+p°+pg+1)
(p
(p?

p
p
2 2

(pq+1) +pg+1)
a*(p* +1)(pg + 1)

Therefore we deduce

FD.FT

FP.FT
a®(p* +1)(pg +1)

a(p? +1).ay/(pP? + 1)(¢? + 1)
pg+1

VPR + 1)@ +1)

cos ¢ =

as required.

Now to show that the line F'T" bisects the angle PF(@), it suffices to show that ¢ is equal to the
angle TFQ (see the sketch above).

Now we can find cos(£LTFQ) by using the above formula and swapping every p and ¢ in it, as
this will swap the roles of P and Q.

But swapping every p and ¢ does not change the formula, so cos(ZTFQ) = cos(£TFP), and
so ZTFQ = ZTFP as both angles are strictly less than 180° and cosine is one-to-one in this
domain.

Thus the line F'T" bisects the angle PF(Q), as required.



Question 5

Given that 0 < k < 1, show with the help of a sketch that the equation
sinx = kx (*)

has a unique solution in the range 0 < x < .

We sketch the graph of y = sinx in the range 0 < x < 7 along with the line y = kx.

Now since d%(sin x) = cosz, the gradient of y = sinz at = 0 is 1, so the tangent at x = 0 is

y = x. We therefore also sketch the line y = .

’ y = kx

o
o
)
gy

It clear that there is at most one intersection of y = kx with y = sinx in the interval 0 < z < 7,
and since 0 < k < 1, there is exactly one, as the gradient is positive and less that that of
y = sinx at the origin. (If £ < 0, there would be no intersections in this range as kz would be
negative or zero; if k£ > 1, the only intersection would be at x = 0.)

Let .
I:/ ‘sinx—kx‘dx.
0
Show that 5
1= T oma —2cosa — asina,
2c0

where « is the unique solution of ().

It is a pain to work with absolute values (the “modulus function”), so we split the integral
into two integrals: in the interval 0 < = < «, sinx — kx > 0, and in the interval o < = < 7,
sinz — kx < 0. So

I:/ﬂ}sinx—kﬂdx

0

:/a‘sinx—kx‘dx—i- 7r‘silrlav—lf:zc}dac
0 «@

:/ sinx—kxdaz+/ —sinx + kx dx
0 a

= [— cosSx — %ka]g + [COSSL’ + %kwﬂz

= (—cosa — %k:oﬂ) — (—cos0—0) + (cosm+ %ka) — (cosa + %ka2)

= —2cosa — ka® + %kﬂ'Q
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w2 sin o

= —2cosa — asina +
2cy

where the last line follows using ka = sina so that & = (sina)/a, and we have reached the
desired result.

Show that I, regarded as a function of «, has a unique stationary value and that this stationary
value is a minimum. Deduce that the smallest value of I is

T
—2cos —.

V2

We differentiate I to find its stationary points. We have

T — si . .
dr 2 facosa — sina
——————— | +2sina — sinow — . cos &

da 2 a?
2
= (sina — awcos o) — L(Sina — acos )
202
2
=(1- 2 (sina — avcos )
202

SO % = 0 if and only if 2a? = 72 or sina = acosa. The former condition gives a = +7/v/2,

while the latter condition gives tan o = a.

2

A quick sketch of the tan graph (see below) shows that tan o = « has no solutions in the range
0 < a < 7 (though a = 0 is a solution); the sketch uses the result that %(tan r) = sec’z, so

the tangent to y = tanx at xt =0is y = x.

[ME

Y

Thus the only solution in the required range is o = 7/+/2 (and note that 7/v/2 < 7).

To ascertain whether it is a maximum, a minimum or a point of inflection, we could either
look at the values of I or dI/da at this point and either side or we could consider the second
derivative.

Either way, we will eventually have to work out the value of I when a = m/v/2, so we will do so
now:
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72 sin(7/v/2) ™ T T
= ————> —2cos—= — —=sin—
21 /2 V2 V2 V2
L S ™ T . T
= —=sin—= —2cos —= — —=sin —
V2 V2 V2 V2 V2
= —2cos —.

V2

Approach 1: Using values either side

The function I is not well-defined when o = 0, but if we know that S“?Ta — 1 as a — 0, we can
deduce that as o« — 0, I — —2 + %2 > 5> 2 (using 7 > 3).

When o = 7, we have [ = 2.
Since at a = m/v/2, we have I = —2cos(7/v/2) < 2, this must be the minimum value of I.

Alternatively, if we wish to consider the value of dI /da, we need to know the sign of sin «—a cos «
near a = m/v/2. Now since 5 <a<m, cosa <0 and so this expression is positive. Therefore
for a slightly less that 7r/\/§, dl/da < 0 and for a > 7r/\/§, dI/da > 0, so that o = 7/+/2 is a

(local) minimum.

Approach 2: Using the second derivative

We have
d2.7_7r2 . 2 .
@—E(sma—acosa)—i- 1—@ (cosa — cos @ + asin )
2 w2 _
:3(s1na—acosa)+<1—w>asma
a

Now when a = m/1/2, so that 72/2a? = 1, we have

d2r w2
Freh g(sma — acos ).
«
. . 2 ..
Since oo = gﬁ > g, we have sina > 0 and cosa < 0, so % > 0 and [ has a local minimum at
this value of a.



Question 6

Use the binomial expansion to show that the coefficient of x" in the expansion of (1 —x)~3 is
Fr+1)(r+2).

Using the formula in the formula book for the binomial expansion, we find that the z" term is

<;3> (—.CC)T _ (_3)(_4)<_5)T' : (_3 —r+ 1> (—1)T.%'T
3.4.5.--.(r+2)

- rl 7

345, -.(r+2) ,

12345 -7 ©

(r+ 1)(7“—1—2):57,
1.2

so the coefficient of 2" is 4 (r + 1)(r + 2). But the argument as we've written it assumes that

r > 2 (as we've left ourselves with “1.2” in the denominator), so we need to check that this
this also holds for r = 0 and » = 1. But this is easy, as (_03)(—1)0 =1=1x1x2and

(P)(=D)t=3=3%x2x3.

Alternatively, we could have argued

34.5.---.(r+2) ., 12345.---.(r+2) ., (r+1)r+2) ,
A= = T
rl 1.2.7! 1.2

and this would have dealt with the cases r = 0 and » = 1 automatically, as we are not implicitly
assuming that r > 2.

(i)  Show that the coefficient of z" in the expansion of

1 -z + 222
(1—x)3
is r2 + 1 and hence find the sum of the series
2 5 10 17 26 37 50

1+2 42y 2y 225
+2+4+8+16+32+64+128+

We have
1—x+ 222

(1—x)?
where a, = 1(r +1)(r +2). Thus

=(1—z+22%)(ap + a1z +ax® + - +az" +...)

1—x+ 222

(1= 2)? =ay + a1z + agx® + - + arx” + -

J— aox J— a1x2 [ T — ar—lxr —_ e e .
+ 20022 + o+ + 2ap_0a” + -
= ag + (a1 — ao)z + (az — ag + 2ag)x* + - - -

+ (ar —Qr_1+ 2ar—2)xr + -
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Thus the coefficient of " for r > 2 is

ar — p1 +2a,2=3(r+1)(r+2)—3r(r+1)+ (r—1)r
= %(r2+3r—|—2—7“2—r+2r2—2r)
= 3(2r" +2)
=r’4+1
as required. Also, the coefficient of 20 is ag = 1 = 0% + 1 and the coefficient of 2! is a; — ag =

3—1=2=12+1, so the formula 72 4+ 1 holds for these two cases as well. Therefore, the
coefficient of z" is 2 + 1 for all r > 0.

Now we can sum our series: it is

2 5 10 17 0241 1241 2241 41
1+ 24+ 20 20 =
totits T ot o Tttt

O+ + QP +DE)++ PP+ DE) +

1- }+ 2

-1
1
(3)
= 8.
(ii) Find the sum of the series
9 25 9 49
1+2+ 5 +2+ o f o e
2+ 2t ettt

The denominators look like powers of 2, so we will rewrite the terms using powers of 2:

1+2+9+2+%+9+ _1+§+9+§+§+§+4ﬁ+
4 " 16 8 1 2 4 8 16 32 64

and it is clear that the general term is /27!, starting with the term where r = 1.
We can rewrite this in terms of the series found in part (i) by writing

2 r2 r2+1 1
or—1 ’ or ’ or e 27"’

SO our series becomes

2 4 8 16 2 4 8 1

Y ST o(1+iaiyly Ly
- 24 8 16

where on the second line, we have introduced the term corresponding to r = 0, and on the
penultimate line, we have used the result from (i) and the sum of the infinite geometric series

1+3+5+3+-=1/1-1) =2
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An alternative approach is to begin with the result of part (i) and to argue as follows.

We have

1—z+ 222 >
1—27 > (412
r=0

0 0o
:§ :T2.73T—|-§ :xr
o0

SONCEES v
=0
But our required sum is Y o0, r?(3)"!, so we put z =  into this result and get
1—-3 +2 % 1 - 2 1 1 1
ETE O e L0
r=0 r=0

The last term on the right hand side is our geometric series, summing to 2. The left hand side
evaluates to 8, and so we get
o
2(1)
=32 rG)

r=0

NJ\»—A

Thus our series sums to 12, as before.

A third approach is to observe that the series can be written as Y oo ((r + 1)%2" = Y02 ((r? +
2r + 1)z" with = %, then to look for a polynomial p(z) of degree at most 2 such that the
coefficient of 2" in the expansion of p(z)/(1 — z)® is exactly r2 + 2r + 1, using methods like
those in part (i). (The polynomial needs to be of degree at most 2 so that the terms are also
correct for r = 0 and » = 1 in addition to the general term being correct.) This turns out to
give p(z) = z + 1, so that the sum is (3 +1)/(1 — )3 = 12.



Question 7

In this question, you may assume that In(1 + z) ~ x — $2* when || is small.

The height of the water in a tank at time t is h. The initial height of the water is H and
water flows into the tank at a constant rate. The cross-sectional area of the tank is constant.

(i)  Suppose that water leaks out at a rate proportional to the height of the water in the
tank, and that when the height reaches a®H, where « is a constant greater than 1, the
height remains constant. Show that

dh

- — 2 .
iy k(aH — h),

for some positive constant k. Deduce that the time T taken for the water to reach height

aH is given by
1
kT =1n (1 + >
@

and that kT ~ o~ for large values of .

Since the tank has constant cross-sectional area, the volume of water within the tank is propor-
tional to the height of the water.

Therefore we have the height increasing at a rate a — bh, where a is the rate of water flowing in
divided by the cross-sectional area, and b is a constant of proportionality representing the rate
of water leaking out. In other words, we have

dh
— =a — bh.
a
Now, when h = o?H, % =0,s50 a—ba’H =0, or a = ba’H, giving
dh
i ba’H — bh = b(a*H — h).

Hence if we write & = b, we have our desired equation.

We can now solve this by separating variables to get

1

—In(a?H — h) = kt +c.

so that

Att=0,h=H,so
—In(e?H — H) = ¢,

which finally gives us
kt =In(a?H — H) — In(o®H — h).
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Now at time T, h = aH, so that
ET = In(o?H — H) — In(a*H — aH)

. o’H —H
M\ eH ol
T |
a a? —a
(a—i—l)

=1In

«

1
:ln<1+>

«

When « is large, so that é is small, this is

kT:ln(l—l-l)
o

~
~

as required.

%

(ii) Suppose that the rate at which water leaks out of the tank is proportional to Vh (instead
of h), and that when the height reaches o> H, where o is a constant greater than 1, the
height remains constant. Show that the time T’ taken for the water to reach height « H
is given by

CT’:2\/E<1\/a+aln<l+\/1&>>

for some positive constant ¢ and that ¢I” ~ +/H for large values of c.

We proceed just as in part (i).

This time we have

dh
— —a—-bh
o = bVh,

where a and b are some constants. Now, when h = o?H, % =0, so a — bVa?2H = 0, which
yields a = bar/H. We thus have

% :ba\/ﬁ—b\/ﬁzb(a\/ﬁ—\/ﬁ).

So if this time we write ¢ = b, we have our desired differential equation.

We again solve this by separating variables to get

= [ cdt.

/wdh

To integrate the left hand side, we use the substitution v = vk, so that h = u? and % = 2u.
This gives us

- 2udu = ct.

| i
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We divide the numerator by the denominator to get

B (af—u)—i—?a\ﬁ
=

_ 204\F

- [
:—2u—2a\/>ln(a\/>—u)—|—c’
=—2Vh— 2a\/ﬁln(a\/ﬁ — \/E) +c

where ¢ is a constant.

An alternative way of doing this step is to use the substitution v = avV H —

(a\/ﬁ— U)2 = o?H — 200V H + v? and @ — 2av/H + 2v. This gives us

1
ct—/v(—Za\/ﬁ—i—%)—ct
—2avH
=/M+2dv
v

= —2aVHInv+2v+¢
= —Qa\/ﬁln(a\/ﬁ— \/ﬁ) + Z(a\/ﬁ— \/E) +c

where ¢ is again a constant.

Att=0,h=H,so
¢ — 2V + 20/ H n(aVT - V).

Now at time T”, h = oH, so that

Vh, so that h =

T' = —2vaH — 2avVHIn(oVH — VaH) + 2VH + 20v/H In(aVH — VH)

:2x/ﬁ(1—\/&)+2a¢f?1n< ovH - f)

VH - Vall
2V (1 va st (VI D))

wn{1-smeon(5)

_2f<1—f+a1n(1+ 1 ))

as required.

When « is large, 1/4/a is small, so this gives

T’zQ\/ﬁ(l—\/a—kaln(l—F\/la))
<oVl (1 v (- 1)
~2VH (1 - Va+va—3)
~ VH.



Question 8

(i)  The numbers m and n satisty
mi=nd+n?+1. (%)

(a) Show that m > n. Show also that m < n + 1 if and only if 2n? 4+ 3n > 0. Deduce
thatn <m<n-+1 unless—%énéO.

As n? > 0, we have
m? =n3+n?+1
>nd+1
> nd
so m > n as the function f(x) = 22 is strictly increasing.
Now
m<n+1 < m?<(n+1)3
— nP4n?+l1<n®+3n?+3n+1
— 0<2n®+3n
so m < n+ 1 if and only if 2n? 4 3n > 0.

Combining these two conditions, n < m always, and m < n + 1 if and only if 2n? + 3n > 0, so
n<m <mn+ 1 unless 2n% + 3n < 0.

N

Now2n2+3n:2n(n+%)gOifandonlyif—%gngo, son<m<n+1unless —2 <n <0.

(b) Hence show that the only solutions of (x) for which both m and n are integers are
(man) = (150) and (mvn) = (17 71)

If solution to (*) has both m and n integer, we cannot have n < m < n + 1, as there is no

integer strictly between two consecutive integers. We therefore require —% <n<0,son=-1
or n = 0.
If n=—1, then m? =1, som = 1.

If n =0, then m®> =1, som = 1.

Thus the only integer solutions are (m,n) = (1,0) and (m,n) = (1, —1).

(ii)  Find all integer solutions of the equation

PP = +2¢ 1.

We try a similar argument here. We start by determining whether p > ¢:
p>q = p’>¢

— F+2°-1>¢
— 2°>1

3

= ¢>1
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so that p > ¢ unless ¢? < %, and ¢ < % if and only if —% <g <

[\
Sl
[}

We now determine the conditions under which p < ¢ + 1:
p<q+l <= p’<(¢+1)?

= @+2¢¢ - 1<@+3¢+3¢+1

— 0<¢*+3¢+2
so p < ¢+ 1 unless ¢? + 3¢ +2 < 0. This condition becomes (¢+1)(g+2) < 0,0 -2 < ¢ < —1.
Thus g < p < ¢+ 1 unless —%gqgﬁor -2<g< -1
If p and ¢ are both integers, this then limits us to three cases: ¢ =0, ¢ = —1 and ¢ = —2.
If g =0, then p? = —1,s0 p = —1.
If g = —1, then p? = 0, so p = 0.
If g = —2, then p? = —1,s0 p = —1.
Hence there are three integer solutions: (p,q) = (—1,0), (p,q) = (—1,—2) and (p,q) = (0, —1).



Question 9

A particle is projected at an angle 8 above the horizontal from a point on a horizontal plane.
The particle just passes over two walls that are at horizontal distances di and ds from the
point of projection and are of heights dy and dy, respectively. Show that

tanf = —d% +hdy 1 .

dido
We draw a sketch of the situation:
YA
A
B
ds
v
0
d, ds T

We let the speed of projection be v and the time from launch be ¢t. We resolve the components
of velocity to find the position (x,y) at time ¢:

H(—) x = (vcosO)t (1)
21 y = (vsind)t - Lgf? 2)
At A (distance d; from the point of projection), we find

(vcosO)t = dy
(vsin0)t — $gt* = dy

so that

v cos b
giving
v sin 6 %gd% iy
veos® + v2costfh D
so that )
gdj
do =djtanl — —————.
2 1hat 202 cos2 0
This can be rearranged to get
gd
————— = d;tanf — ds. 3
202 cos? 0 1hat 2 (3)

(An alternative is to first eliminate ¢ from equations (1) and (2) first to get

2
gr
=ztanf — —2— 4
y=ztan 202 cos? 0 (4)
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and then substitute z = dy and y = ds into this formula.)

Likewise, at B we get (on swapping d; and d2):

gd3

m:thang—dl. (5)

Multiplying (3) by d2 gives the same left hand side as when we multiply (5) by d?, so that
(dy tan® — dy)d3 = (dy tan @ — dy)d>.

Expanding this gives
dyditan® — dy = d2dytan 6 — ds.

Collecting terms gives:
(dyd3 — d3dy) tan 6 = d — ds,

and we can factorise this (recalling that a® — b3 = (a — b)(a® + ab + b?)) to get
didy(dy — dp) tan 8 = (dy — dy)(d3 + dody + d3).
Dividing by dida(da — d1) # 0 gives us our desired result:

_ d3 + didy + d3

tan 6
an d1dy

Find (and simplify) an expression in terms of dy and ds only for the range of the particle.

The range can be found by determining where y = 0, so (vsinf)t — % gt?> = 0. This has solutions
t = 0 (the point of projection) and ¢t = (2v/g) siné. At this point,

202 sin 6 cos 0

9

202 cos? 6
= ——— tané.

x = (vcosf)t =

We have written sin § = cos 6 tan 6 because equation (3) gives us a formula for the fraction part
of this expression: we get
di
r=——-—— tan#.
dl tanf — d2

Alternatively, using equation (4), we can solve for y = 0 to get x = 0 or

gx

tanf = —2——.
202 cos? 0

Since z = 0 at the start, the other solution gives the range. Using equation (3) to write

g _dytant —d
202 cos26 d% ’
we deduce that
d3 tan @

v dltan9—d2
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as before.

We can now simply substitute in our formula for tan 8, simplify a little, and we will be done:

P2 d? + dydy + d3
1 dydy

2 2

xTr =

dyds
_ dy(d} + dudy + d3)
 (d? + dida + d3) — d3
_ dy(d? + dydy + d3)
N d2 + dyds
2+ dydy + d3
dy + do

Alternative approach

An entirely different approach to the whole question is as follows. We know that the path of
the projectile is a parabola. Taking axes as in the above sketch, the path passes through the
three points (0,0), (d1,ds) and (da,d1). If the equation of the curve is y = ax? + bx + ¢, then
this gives three simultaneous equations:

0=0a+0b+c
dy = dia+dib+c
dy = d3a + dab + c.

The first gives ¢ = 0, and we can then solve the other two equations to get a and b. This gives

0 — d%—d% :7d1+d2
Ldy — d2dy drds

B -d B rdd+d
Ldy — 2d; drds

Then the gradient is given by dy/dz = 2ax + b, so at z = 0, the gradient dy/dz = b, which gives
us tanf (as the gradient is the tangent of angle made with the z-axis). The range is given by
solving y = 0, so z(az + b) = 0, giving x = —b/a = (d? + dids + d3)/(dy + d2) as before.



Question 10

A particle, A, is dropped from a point P which is at a height h above a horizontal plane. A
second particle, B, is dropped from P and first collides with A after A has bounced on the
plane and before A reaches P again. The bounce and the collision are both perfectly elastic.
Explain why the speeds of A and B immediately before the first collision are the same.

Assume they collide at height H < h. The perfectly elastic bounce means that there was no loss
of energy, so A has the same total energy at height H on its upwards journey as it did when
travelling downwards. We can work out the speeds at the point of collision, calling them v4 and
vp for A and B respectively. We write M for the mass of A and m for the mass of B (as in the
next part of the question). We have, by conservation of energy

MgH + $Mv3 = Mgh
mgH + %mv% = mgh

so that v4 = 2(gh — gH) and v% = 2(gh — gH), so |v4| = |vg| and the speeds of A and B are
the same.

The masses of A and B are M and m, respectively, where M > 3m, and the speed of the
particles immediately before the first collision is u. Show that both particles move upwards
after their first collision and that the maximum height of B above the plane after the first
collision and before the second collision is

4M (M — m)u?

h
T T mg

This begins as a standard collision of particles question, and so I will repeat the advice from
the 2010 mark scheme: ALWAYS draw a diagram for collisions questions; you will do yourself
(and the marker) no favours if you try to keep all of the directions in your head, and you are
very likely to make a mistake. My recommendation is to always have all of the velocity arrows
pointing in the same direction. In this way, there is no possibility of getting the signs wrong
U1 — V2

ug — U1
have to be careful with the signs of the given velocities. The algebra will then keep track of the

directions of the unknown velocities for you.

in the Law of Restitution: it always reads vi — vy = e(ug — uy) or = e, and you only

A diagram showing the first collision is as follows.

ugp = —U UB

Before Uq = 1 After VA
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Then Conservation of Momentum gives

Mup +mug = Mva + mup
SO

Mu — mu = Mvsg +mup,
and Newton’s Law of Restitution gives

vp —v4 = 1(ug — up)

(using e = 1 as the collision is perfectly elastic). Substituting u4 = u and ug = —u gives
Muvg +mupg = (M —m)u (1)
v —v4 = 2u. (2)

Then solving these equations (by (1) —m x (2) and (1) + M x (2)) gives

- @)

To show that both particles move upwards after their first collision, we need to show that v4 > 0
and vg > 0. From equation (3) and M > 3m (given in the question), we see that v4 > 0; from
equation (4) and 3M —m > 9m —m > 0 (as M > 3m), we see that vg > 0. Thus both particles
move upwards after their first collision.

To find the maximum height of B between the two collisions, we begin by finding the maximum
height that would be achieved by B following the first collision assuming that there is no second
collision. We then explain why the second collision occurs during B’s subsequent downward
motion and deduce that it reaches that maximum height between the collisions.

The kinetic energy (KE) of B before the first collision is 3mu? and after the first collision is
3M —m\”
21 = 5 <M+m) W
so that B has a gain in KE of %mv% — %muz. When B is again at height h above the plane,
which is where it was dropped from, it now has this gain as its KE. (This is because the KE

just before the first collision has come from the loss of GPE; when the particle is once again at
height h, this original KE (3mu?) has been converted back into GPE.)

The particle B can therefore rise by a further height of H, where

3M —m\®
mgH = %mv% — %mu2 = %mu2 ((m) — 1) ,

M+ m
SO
H_u2 9M? — 6Mm +m?  M? +2Mm +m?
2 (M + m)? (M + m)?
- u? (8M? —8Mm
29\ (M +m)?
4u

(e

<
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Thus the maximum height reached by B after the first collision, assuming that the second
collision occurs after B has started falling is

4M (M — m)u?

h+ H=h+
(M +m)3g

Finally, we have to explain why A does not catch up with B before B begins to fall. But this
is easy: B initially has a greater upward velocity than A (as vg — v4 = 2u > 0), so the height
of B is always greater than the height of A. Therefore they can only collide again after A has
bounced on the ground and is in its ascent while B is in its descent.

Alternative approach: using constant acceleration and “suvat”

An alternative approach is to use the formula for constant acceleration (“suvat”), as follows.

Just before collision, B has speed u, so the height H of B at this point is given by the “suvat”
equation v? = u? + 2as, taking positive to be downwards:

u? = 0%+ 2g(h — H),

giving H = h —u?/2g.

Immediately after the collision, B has velocity upwards given by equation (4) above. At the
maximum height, hyax, the speed of B is zero, so we can determine the maximum height using

v? = u? + 2as again; this time, we take positive to be upwards, so a = —g:
3M —m)u>
0% = 7( —2¢(hmax — H).
( M+m ) 9(Pumax — H)

(Note that hpmax — H > 0.)

Rearranging this gives

1 ((3M —m)u\?
hmax = H+ — | ————
max + 29 ( M+m >

=h — u2_|_u2<(3]\47n)>2
2 29 M+m
u? ((B3M —m)? — (M +m)?
B 2g< (M +m)? )
u2 8M? —8Mm
2 ( (M + m)? )
4AM (M — m)u?
=M TR

as required.



Question 11

A thin non-uniform bar AB of length 7d has centre of mass at a point G, where AG = 3d.
A light inextensible string has one end attached to A and the other end attached to B. The

string is hung over a smooth peg P and the bar hangs freely in equilibrium with B lower
than A. Show that
3sina =4sin g,

where o and 3 are the angles PAB and PBA, respectively.

We begin by drawing a diagram of the situation, showing the forces involved (the tension in the
string, which is the same at A and B since the peg is smooth, and the weight of the bar acting
through G). Clearly BG = 4d, which we have shown as well.

We have indicated the angles «, 8 and ¢ as defined in the question, and have also introduced
the angle 6 as angle AGP. The point M is the foot of the perpendicular from P to AB, which
is used in some of the methods of solution.

Diagram 1: Using 6 for angle Diagram 2: Using ¢ for angle
between rod and vertical between rod and horizontal

Note that we have drawn the sketch with the weight passing through P. This must be the case:
both tensions pass through P and the system is in equilibrium. So taking moments around P
shows that W times the distance of the line of force of W from P must be zero, so that W acts
through P.

The simplest way of showing that 3sina = 4sin 3 is to take moments about G:
M(G)  T3dsina—T.A4dsin =0

so that 3sina = 4sin 3.

An alternative approach is to apply the sine rule to the triangles PAG and PBG and resolve
horizontally; this, though, is a somewhat longer-winded method.
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Given that cos § = % and that « is acute, find in terms of d the length of the string and show
that the angle of inclination of the bar to the horizontal is arctan% .

From cos 8 = %, we deduce sin 8 = %, and hence sina = %sinﬂ = %. Thus cosa = i%, and
3

since « is acute, cosa = .
There are numerous ways of finding the length of the string, [, in terms of d. We present a few
approaches here.

Approach 1: Show that ZAPB = §

To find the length of the string, we first find the angle APB.
One method is to note that ZAPB =7 —a — 3, so
sin(m — a — ) = sin(a + )
= sinacos B + cos asin 8
_4.,4,3,3
=5Xgt5x3
=1

)

so ZAPB = 7 and the triangle APB is right-angled at P.
Alternatively, as sina = cos 3, we must have a + 8 = 5, so ZAPB = 7.

Thus AP = ABcosa = 7d.% = %d and BP = ABsina = 7d.§ = %d, so the string has length
(2 + E)d — 4y
5 T/ T 5

Approach 2: Trigonometry with the perpendicular from P

In the triangle APB, we draw a perpendicular from P to AB, meeting AB at M. Then

PM = APsina = BPsinf. (This can also be shown directly by applying the sine rule:
AP/sin 8 = BP/sina.)

We also have AB = AM + BM = AP cosa+ BPcosf3 = 7d.

Now using our known values of sin «;, etc., these equations become %AP = %BP so that BP =
3AP, and $AP + $BP =Td.
Combining these gives %AP—}—%AP =T7d,so AP = 2—51d and hence BP = 25—8d andl = AP+BP =

49
94,

Approach 3: Cosine rule

We apply the cosine rule to the triangle APB, and we write x = AP and y = BP for simplicity.
This gives us

22 = AB%* + y?> — 2AB.ycos or
y? = AB? + 22 —2AB.xz cos a.

There are different ways of continuing from here. The most straightforward is probably to begin
by showing that BP = %AP ory = %x as in Approach 2. This then simplifies the two equations
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to give

y)? = (7d)* + y* — 2(7d).y. or
.

3
4
(32) = (7d)* + 2* — 2(7d)

Uleo Ol

We can then expand and rearrange these quadratics to get
1—76yz — %dy +49d* = 0 or
gx2 + %dw —494* = 0.
Dividing by 7 and clearing fractions (multiplying by 80 and 45 respectively) gives
5y? — 128dy + 560d*> =0  or
52 + 54dx — 315d° = 0.
These quadratics turn out to factorise as
(y —20d)(5y —28d) =0 or
(x 4 15d)(5z — 21d) = 0.

The first equation gives two possibilities: y = 20d or y = %d, whereas the second only gives
one: T = %d.

For the first equation, y = 20d would imply =z = %y = 15d, but then we would have

AB? + 2% —y?  49d? + 225d* — 400d>
2ABx 14d.15d

cosx =

<0,

which is not possible as « is acute.

So we must have x = %d and y = %d, and hence l = x4+ y = %d.
Approach 4: Sine rule

Using the sine rule on the triangle APB, we have

AB AP BP

sin(m —a— )  sinf " sina’
We use sin(m — ¢) = sin ¢ and the addition (compound angle) formula to write

sin(m — o — ) = sin(a + )
=sinacos 8 + cos asin 3

4,44 33
=5 X5t5X5

=1,

so that the sine rule becomes
d AP BP

1 3/5 4/5
giving AP = 2.d, BP = 22d and hence | = AP + BP = 2.

We now find ¢, the angle of inclination of the bar to the horizontal. Referring to the above
diagrams, we have ¢ = 5 — 0, so tan ¢ = cot 0.

Here again are several approaches to this problem.
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Approach 1: Resolving forces horizontally and vertically

We resolve horizontally to get
H(—) Tsin(m — 0 — o) — T'sin(0 — ) = 0.

Therefore we get
sin(f + a) = sin(6 — B).

We now use the addition formula for sine to expand these, and then substitute in our values for
sin v, etc., giving:
sin @ cos a + cos @ sin o = sin @ cos f — cos O sin 3

SO
3 & 4 — 4 _3
£sinf + g cosf = £ sinf — £ cos 6
giving
7 1
50086—5sm9.

Dividing by cosf now gives cotf = %, hence the angle made with the horizontal is given by
tan ¢ = %, yielding ¢ = arctan% as required.

Alternatively, using ¢ instead of # in the original equations, we get
H(—) Tsin(5 +¢—a) —Tsin(§ —¢—3) =0,
which simplifies (on dividing by 7' # 0 and using sin(§ — x) = cos ) to
cos(a — ¢) — cos(¢p + B) = 0.

The rest of the argument follows as before.

Approach 2: Resolving forces parallel and perpendicular to the rod
We resolve parallel to the rod to get

Z(\) Tcosa+ Wcos —Tcosf3=0
and perpendicular to the rod to get

Z() Tsina— Wsinf +T'sin 8 = 0.
Rearranging these gives:

W cos = —T cosa+ T cos 3
Wsinf = Tsina+ T'sin 5.
Dividing these equations gives

—cosa + cos 3
COtGZ T ——
sin o + sin g
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Since tan ¢ = cot @, as we noted above, we have tan ¢ = %, SO ¢ = arctan% as required.

Approach 3: Dropping a perpendicular

In the triangle APB, we draw a perpendicular from P to AB, meeting AB at M. Then
PM = APsina = 2d.2 = 8d and AM = APcosa = 2d.2 = 88d. As AG = 3d, it follows
that MG = AG — AM = £d.

Then (see the diagram above) we have tanf = PM /MG = %d/%d = 7 so that cot§ = tan¢ =
%, giving ¢ = arctan% as required.

Approach 4: PG bisects ZAPB
As in approach 1 above, we resolve horizontally (using diagram 2) to get
Tsin(§ — (a—¢) —Tsin(§ —¢—3) =0.
Since both of the angles involved here are acute (as the triangle BG P has an obtuse angle at G),
they must be equal, giving o — ¢ = ¢ + 3, so that 2¢ = a — .

Hence we have

cos 2¢p = cos a.cos 3 + sin asin 3

_ 34,43

=535155

— 24

= 25"
We therefore deduce using cos 2¢ = 2 cos? ¢ — 1 that cos? ¢ = g—g and sin® ¢ = 5—10. It follows that
tan® ¢ = sin? ¢/ cos® ¢ = i, giving tan ¢ = % (the positive root as ¢ is acute) or ¢ = arctan%
as required.



Question 12

I am selling raffle tickets for £1 per ticket. In the queue for tickets, there are m people each
with a single £1 coin and n people each with a single £2 coin. Each person in the queue
wants to buy a single raffle ticket and each arrangement of people in the queue is equally
likely to occur. Initially, I have no coins and a large supply of tickets. I stop selling tickets if
I cannot give the required change.

(i) In the case n = 1 and m > 1, find the probability that I am able to sell one ticket to
each person in the queue.

I can sell one ticket to each person as long as I have a £1 coin when the single person with a £2
coin arrives, which will be the case as long as they are not the first person in the queue. Thus
the probability is
1 1 m
m+1 m+1

(ii) By considering the first three people in the queue, show that the probability that I am

able to sell one ticket to each person in the queue in the casen = 2 and m > 2 is 1
m

This time, I can sell to all the people as long as I have one £1 coin when the first £2 coin is
given to me and I have received at least two £1 coins (in total) by the time the second £2 coin
is offered.

So we consider the first three people in the queue and the coin they bring; in the table below,
“any” means that either coin could be offered at this point. (This called also be represented as
a tree diagram, of course.) The probabilities in black are those of success, the ones in red are
for the cases of failure. Only one or the other of these needs to be calculated.

Ist 2nd 3rd Success? Probability

m m—1 m m+ 2
£1  £1 =
S TR R (2>/< 2)
2 -1 -1 2
£1£2  £1 yes LN T (m mt
m+2 m+1 m 1 2
£1 £2  £2 no m_ 2 xlzl m+2
m+2 m+1 m 2

2 m+1 m + 2
£2 any any no =
m + 2 1 2

To determine the probabilities in the table, there are two approaches. The first is to find the
probability that the kth person brings the specified coin given the previous coins which have
been brought; this is the most obvious method when this is drawn as a tree diagram. The
second approach is to count the number of possible ways of arranging the remaining coins
and to divide it by the total number of possible arrangements of the m + 2 coins, which is
(") = S(m+2)(m + 1).
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Therefore the probability of success is

m(m —1) 2(m —1) (m+2)(m—-1) m-—1

(m+2)(m+1)  (m+2)(m+1) (m+2)(m+1) m+1

Alternatively, we could calculate the probability of failure (adding up the probabilities in red)
and subtract from 1 to get

2 2 2 14 (m+1) 2 m—1

(m+2)(m—|—1)_m+2: Tm+2 m+2 0 m+2 m+2

(iii) Show that the probability that I am able to sell one ticket to each person in the queue

in the case n = 3 and m > 3 is .
m+1

This time, it turns out that we need to consider the first five people in the queue to distinguish
the two cases which begin with £1, £1, £2, £2; the rest of the method is essentially the same
as in part (ii).

Ist 2nd 3rd 4th 5th  Success? Probability

-1 -2
£1  £1 £1  any any yes m X m X m (" m+3
m+3 m+2 m+1 3 3

m m—1 3 m—2
X X X
m+3 m+2 m+1 m

()07

X X X — X ——
m+3 m+2 m+1 m m-—1

_(m— 2 m—+3
B 1 3
m m—1 3 2 1
X X X — X
m+3 m+2 m+1 m m-—1

_ 1/ (m + 3)
3

m 3 m—1 m-2
X X X
m+3 m+2 m+1 m

_ m—1 m—+3
N 2 3
m 3 m—1 2
X X X —
m+3 m+2 m+1 m m-—-1

_(m— 2 m+3
N 1 3
m 3 m—1 2 1
X X X — X
m+3 m+2 m+1 m m-—1

£1  £1  £2 £1 any yes

£1 £1  £2  £2 £1 yes

£1  £1 £2 £2 £2 no

£1 £2 £1  £1 any yes

£1 £2  £1  £2 £1 yes

£1  £2 £1 £2 £2 no
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B m+3
B 3
3 2 ) m+3
£1  £2 £2 any any no m — X X — (™ " +
m—+3 m—+ 2 m—+ 1 1 3

£9 3 m—+ 2 m—+ 3
an an an an no =
Y Y Y Y m-+3 2 3

(Alternatively, the four cases beginning £1, £2 can be regarded as £1, £2 followed by 2 people
with £2 coins and m — 1 people with £1 coins, bringing us back into the case of part (ii). So the
probability of success in these cases is mﬁ?’ X mi—? X mnf, where the final fraction comes from
the result of part (ii).)

Therefore the probability of success is

1
(m+3)(m+2)(m+1)

(m(m —1)(m —2) + 3(m — 1)(m — 2)+
6(m — 2) + 3(m — 1)(m — 2) + 6(m — 2))

- (m+3)(21§)(m+1)(m(m—1)+6(m—1)+12)

m— 2
- (m+3)(m+2)(m+1)(m2+5m+6)
_om—2
=TT

Similarly, the probability of success can be calculated by considering the probability of failure:
the probability of success is therefore
_ 6 B 6 B 6m 3
(m+3)(m+2)(m+1) (m+3)(m+2)(m+1) (m+3)(m+2)(m+1) m+3
124+ 6m+3(m+1)(m +2)

= T et 2)m 1)

L 3m? + 15m + 18
(m+3)(m+2)(m+1)
3(m +2)(m+ 3)
C (m+3)(m+2)(m+1)
3

T m+t1

_om—2

=T

There seems to be a pattern in these results, and one might conjecture that the probability of
; ; . . m+1l—n .
being able to sell one ticket to each person in the general case m > n is V1 This turns

m
out to be correct, though the proof uses significantly different ideas from those used above.



Question 13

In this question, you may use without proof the following result:

/\/ — 22dz = 2arcsin(3z) + s2V4 — 22 +c.

A random variable X has probability density function f given by

2k —a<ax<0
flx)=CqkvVd—22 0<x2<2
0 otherwise,

where k and a are positive constants.

(i)  Find, in terms of a, the mean of X.

We know that ffooo f(x)dz = 1, so we begin by performing this integration to determine k.
We have

0 2
/ 2k:dx—|—/ kv4 — 22dx = [2kx]2a+k[2arcsin%—|—%x\/4—x2]§
0

—a

= 2ak + k((2arcsin 1 4 0) — (2arcsin 0 + 0))
= 2ak + km

=k(2a+m)

pr— 17

so k=1/(2a + ).

We can now work out the mean of X; we work in terms of k£ until thtle very end to avoid ugly
calculations. We can integrate the expression zv/4 — 22 = kx(4 — 2?)2 either using inspection
(as we do in the following) or the substitution v = 4 — 22, giving du/dz = —2x, so that the

integral becomes k f4 u2 du = k[—%u ] Bk

B(X) = / " i) de

—0o0

0 2
:/ 2/£a:dx+/ kx4 — x2dx
= [k2?]?, + [-5(4—2?)2]
_ 2 k
—(O—ka)—i—(O—(—g X 4
= —ka® + $k
i
C 2a+4
_ 8 — 3a?
~ 3(2a+m)’

N® O N

)
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(ii) Let d be the value of X such that P(X > d) = {5 . Show that d < 0 if 2a > 97 and find
an expression for d in terms of a in this case.

We have d < 0 if and only if P(X > 0) < P(X > d) = {5, so we consider P(X > 0). Using the
above integration (or noting that X is uniform for x < 0), we have

P(X>0)=1-P(X <0)

=1-2ak

_ 2a

N 2a+m

7

S 24T

Therefore P(X > 0) < 1% if and only if
us < I

2a+m 10’

that is 10m < 2a + 7, or 2a > 97. Putting these together gives d < 0 if and only if 2a > 9.

In this case, as d < 0, we have
P(X>d)=1-P(X <d)=1-2k(d— (—a)),

so 1—2k(d+a) = &, so d+a = 35 /2k, giving

9
d—207k—a
9(2a + )

20
91 — 2a

20

Note that, since 2a > 9, this gives us d < 0 as we expect.

An alternative approach is to calculate the cumulative distribution function first. We have

0 r < —a

F(z) = 2k(z + a) —a<z<0
k:(2a—|—2arcsin %334— %xﬂ) 0<z <2
1 x> 2

(though only the part with —a < z < 0 is actually needed).

Then we solve F(d) = . If it turns out that d < 0, then we have F(d) = 2k(d+ a) = 5, which

rearranges to give d = (97 — 2a)/20 as above. Now if 2a > 9w, then (97 — 2a)/20 < 0 so that
F((97 — 2a)/20) = 1% and d < 0, as required.
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(iii) Given that d = /2, find a.

We note that now d > 0, so we have to integrate to find a explicitly. We get

2
P(X > V2) 2/ k4 —22dx = [2arcsin%+%x\/4—x2]f/§
V2

= k((2arcsin 1 + 0) — (2arcsin %2 + 24— 2))
=k(m—5-1)
=k(3-1)
_ 31
2a+m
1
10°

Thus 10(5 — 1) = 2a + 7, so that 2a = 47 — 10, giving our desired result: a = 27 — 5.

Alternatively, one could calculate P(X < v/2) in the same manner and find a such that this
equals 1%.

As a check, it is clear that 2a = 47 — 10 < 97, so d > 0 from part (ii).
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Q1

(i) There are several routine features of a graph that one should look to consider on any curve-
sketching question: key points, such as where the curve meets or cuts either of the coordinate axes,
symmetries (and periodicities for trig. functions), asymptotes, and turning-points are the usual
suspects. In this case, the given function involves square-roots as well, so the question of the
domain of the function also comes into question. Considering all such things for
y =+/1-X ++/3+ x should help you realise the following:

* the RHS is only defined for -3 < x < 1 (so the endpoints are at (-3, 2) and (1, 2));

* the graph is symmetric in the line x = -1, with its maximum at (—l, 2\/5); NB it must be a
maximum since 2+/2 > 2 so there is no need to resort to calculus to establish this;
* the curve is thus N —shaped, and the gradient at the endpoints is infinite. This last point wasn’t

of great concern for the purposes of the question, so its mention was neither rewarded nor its
lack penalised: however, this is easily determined by realising that each term in the RHS is of

the form X %, so their derivatives will be of the form X 2 which, when evaluated at an endpoint
will give one of them of the form % symptomatic of an asymptote.

A quick sketch of y = x + 1 shows that there is only the one solution at x = 1.

(i) Each side of this second equation represents an easily sketchable curve. Indeed, the RHS is
essentially the same curve as in (i), but defined on the interval [-3, 3]. The LHS is merely a

“horizontal” parabola, though only its upper half since the radix (\/_) sign denotes the positive

square-root. These curves again intersect only the once, when x < 0. Resorting to algebra ...
squaring, rearranging suitably and squaring again then yields a quadratic equation in x having one
positive and one negative root.

Q2

The required list of perfect cubes is 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, though there were
no marks for noting them.

(i) In this question, it is clearly important to be able to factorise the sum of two cubes. So, in this
firstinstance x +y =k, (x +y)0¢-xy +y) =kz® = x> —(k-x)x+(k—x)*-z° =0, which

gives the required result upon rearrangement. One could either treat this as a quadratic in x and
3 2

deal with its discriminant or go ahead directly to show that %qy—x)2 >0 which

3 2

immediately gives that % is a perfect square and also that z® > 1k?; and the other half of

the required inequality comes either fromz® =k?* —3xy <k? (since x, y > 0) or from noting that

the smaller root of the quadratic in x is positive. Substituting k = 20 into the given inequality then
3 2

yields 100< z® <400 = z =5, 6, 7 ; and the only value of z in this list for which % IS a

perfect square is z = 7, which then yields the solution (x, y, z) = (1, 19, 7). Although not a part of
the question, we can now express 20 as a sum of two rational cubes in the following way:

o1 2]

(i1) Although this second part of the question can be done in other ways, the intention is clearly
that a similar methodology to (i)’s can be employed. Starting from

X+y=22, Xx+y)(XC-xy+y) =kz.z? = xz—(zz—x)x+(22—x)2—kz:0



4kz — 24

we find that is a perfect square, and also that k < z° <4k . With k = 19, 19<z° <76

_ 53
= z =3 or 4. This time, each of these values of z gives 2(7672) a perfect square, yielding the

two solutions (x, y, z) = (1, 8, 3) and (6, 10, 4). Thus we have two ways to represent 19 as a sum
3 3 3 3
of two rational cubes: 19 = 1 + 8 and 3 + > :
3 3 2 2

Purely as an aside, interested students may like to explore other possibilities for x® +y® =kz°.
One that never made it into the question was
Xx+y=kz, (x+ y)(x2 — Xy + yz): kz.z? = x*—(kz—x)x+(kz—x)*-z*=0

3kz +4/9k?z? —1272%(k? -1
= 3x* —3kzx+z°(k* -=1) =0. Then x = ‘ \/ ‘ 5 2 ( ):%z{3ki\/12—3k2},

requiring 12-3k*>0 ie. k<4 = k=1or2.
Whenk =1: x®+y® =z% has NO solutions by Fermat’s Last Theorem;

and when k =2: x*+y® =2z% has (trivially) infinitely many solutions x=y =z.

Q3

This question is all about increasing functions and what can be deduced from them. It involves
inequalities, which are never popular creatures even amongst STEP candidates. Fortunately, you
are led fairly gently by the hand into what to do, at least to begin with.

(i) (@) f'(x) = cos x — {x.—sin x + cos x} = xsinx >0 for x € [0, 7], and since f(0) = O it
follows that f(x) =sinx —xcosx>0for 0 <x< 17.

(i) (b) A key observation here is that the “1” is simply a disguise for di(x) S0 you are actually
X

being given that di(arcsin X)> di(x) in the given interval; in other words, that f(x) = arcsin x — X
X X

is an increasing function. Since f(0) = 0 and f increasing, f(x) = arcsinx —x >0 for 0 <x< 1, and
the required result follows.

Sin X — X COS X

sin? x

Now, it may help to write u = arcsin x, just so that it looks simpler to deal with here. Then u > x by
(b)’s result = g(u) > g(x) since g’(x) > 0 and the required result again follows.

(i) (c) Writing g(x) = S% = g'(x) = >0for0O<x<irzusing (a)’s result
In X

(if) There is a bit more work to be done here, but essentially the idea is the same as that in part (i),
only the direction of the inequality seems to be reversed, so care must be taken. An added
difficulty also arises in that we find that we must show that f ' > 0 by showing that it is increasing
2 _ _ -

from zero. S0 g(x) = tanx’ g(x) = X Sec x2 tanx _ 2x2 5|n22x

X X 2X° C0S“ X
(since the denominator is clearly positive in the required interval): f(0) = 0 and f '(x) = 2 — 2c0os2x
>0for0O<x< 17 = f>20=9'(x) >0 = g increasing. Mimicking the conclusion of (i) (c),
the reader should now be able to complete the solution.

. Examining f(x) = 2x — sin2x




Q4

(i) Using sin A = cos(90° — A) gives @ = 360n + (90° — 48) — Note that you certainly should be
aware of the periodicities of the basic trig. functions = 56 = 360n + 90° or 36 =360n + 90°.
These give either & =72n + 18° = @ =18°,90°, 162° or # =120n + 30° = & =30°, 150°.

Now using the double-angle formulae for sine (twice) and cosine, we have ¢ = 2.2sc.(1 — 25%). We
can discount ¢ = 0 for &= 18°, so that 1 = 4s(1 — 2s?) which gives the cubic equation in s = sin6,
8s®—4s+1=0= (2s - 1)(4s® +2s — 1) = 0. Again, we can discount ¢ = 1 for #= 18°) which
leaves us with sin18° the positive root (as 18° is acute) from the two possible solutions of this

J5-1
~

quadratic; namely, sin18° =

(i) Using the double-angle formula for sine, we have 4s® + 1 = 16s*(1 —s?) = 0 = 16s* — 12s* + 1

, 124480 3+45
—=> S = =

2 s At first, this may look like a problem, but bear in mind that we want

2
- +
it to be a perfect square. Proceeding with this in mind, s*= 625 = (\/54‘ 1] so that we have

16
«/gilj.

the four answers, sinx = + [ 2
(iii) To make the connection between this part and the previous one requires nothing more than
division by 4 to get sin® x+1=sin® 2x, and the solution x = 3¢ = 18°, 5 = 30° = o =6°
immediately presents itself from part (ii). However, in order to deduce a second solution (noting
that « = 45° is easily seen to satisfy the given equation), it is important to be prepared to be a bit
flexible and use your imagination. The other possible angles that are “related” to 18° and might
satisfy (ii)’s equation, can be looked-for, provided that sin5a = +3 (and there are many

possibilities here also). A little searching and/or thought reveals
sin x = —[%] = 3a =180° + 18° = 198° also works, since 5« =330° has sinsa= -1,

and the second acute answer is a = 66°.

Q5

The simplest way to do this is to realise that OA is the bisector of ZBOC, so that A is on the
diagonal OA’ of parallelogram OBA'C (in fact, since OB = OC, it is a rhombus) = b +c = Aa
for some A (giving the first part of the result). Also, as BC is perpendicular to OA, (b-c).a=0

— (2b-%a).a=0 = A= 2(a'bj.
aea

Similarly (replacing aby b and b by c in the above), we have d = kb — ¢ where k= Z(E .gj
[ ]

= 2(szzz(a'bj—2 —d= (Zﬂ(a.b}zjb—(;ta—b) = ub—Ja where

beb beb .
ﬂ=2ﬂ,(z:gj—l or 4(%}—1.

Now A, B and D are collinear if and only if AD = ub — (A4 +1Da isamultiple of AB=b-a
< t(b-a)= ub—(1+1a forsomet (#0).




Comparing coefficients of aand b then gives (t=) u= A4+ 1.

In the case when 4 =—3, 1 = $ and D is the midpoint of AB.

[aeb]’ aeb)’ :
] -1= 4[—) —1, and using the scalar product formula

Finally, y = 1 = 14 3]
M =2 =2 L[aoa][bob ab

coséd = % gives cosd = —\/g . [Note that a . b has the same sign as 1 .]
a

Q6

To begin with, it is essential to realise that the integrand of | = .[[f ') [f(x)]" dx must have its
two components split up suitably so that integration by parts can be employed. Thus

1= [l T T o = Fooxtolroal = [ b Tr] o

n+1 n+1
Now (and not earlier) is the opportune moment to use the given relationship f "(x) = kf (x) f'(x),

L fpor —j[kf () x—

n+1 n+1
1

(n+1)(n+3)

sothat I = f'(x)x [f (x)]”*szx, which is now directly integrable

1
n+1

[0 - xk[f ()] (+C).

as f'(x)x

(i) For f(x) =tan x, f'(x) = sec®x and f”(x) = 2 sec’x tan x = kf (x) f '(x) with k = 2.
sec’ xtan"*' x  2tan"*®x

Also, differentiating | = 1 _(n D(n+3) gives
+ +D(n+
a_ i(sec2 x.(n+1)tan" x.sec’® x + 2sec x.sec x tan x.tan"** x)
dx n+1
1 .
- = (2(n+3)tan""? x.sec? x) = sec’x tan"x = (f'(x))’ x(f(x))" as required,
(n+1)(n+3)(< ) ) (£'(9) = ( (x))" as reg

although this could be verified in reverse using integration. Using this result directly in the first
given integral is now relatively straightforward:

Isin“x

sec’? xtan® x 2tan’ x
. - +
cos® x

5 35

C.

dx = jsec4 xtan* xdx =

(i1) Hopefully, all this differentiating of sec and tan functions may have helped you identify the
right sort of area to be searching for ideas with the second of the given integrals.
If f(x) =secx +tanx, f’(X) = sec x tan x + sec’x = sec x(sec X + tan x)

and f”(x) = sec®(sec x + tan X) + sec x tan x(sec x + tan x)
= sec X (sec X + tan x)? = kf (x) f'(x) with k = 1.

Then _[secz x(sec x + tan x) dx = j{sec x(sec x + tan x)}” x (sec x + tan x )" dx

_ secx(secx+tanx)® (secx+tanx)’ .
5 35

C




Q7 (i) Once you have split each series into sums of powers of A and y separately, it becomes clear
n
that you are merely dealing with GPs. Thus > b, = (1+ A+ 4.+ /1”)— (1+ LA+t ,u”)
r=0
/anrl —l ILlI’Hl _1 1 L L .
= - = — (A"t 14 4" 1), since A-1=+2 and u-1=-+2
1 - 4 AT -1 CuTm =1
= —a_, -2 and,similarly, Y a, = b, .
R Sa =t e
(ii) There is no need to be frightened by the appearance of the nested sums here as the “inner sum’
has already been computed: all that is left is to work With the remaining ‘outer sum’ and deal
2n m 2n 2n+1
carefully with the limits: >’ (Zarj= Z( 1 m-r—l] Zb (since by =0)
m=0\r=0 m=0 \/E
1 (1 1 1 2 AT
= | —a, -2 |= (2242 _2) = —([,1“l — 20"t + |t ) since Au=-1
a2 = 3wt 2) = 2t -l [T sinee 2
and n + 1isevenwhennisodd = %(bn+1)2 when n is odd. However, when n is even, n + 1 is odd
2n m 1 ) 1 )
and z zar = _(bn+l) -2 or _(an+1) :
m=0\r=0 2 2
n
(iii) We already have the result (Z j % M , S0 the only new thing is
n
May .,y = (A28 ot 224 (4 1+ 17™) |, which s still the sum of two
r=0
n+2 2n+2
GPs, merely with different common ratios, having sum /1(/1/12 1 1)+’u (ﬂ ) 1).
— ﬂ —
Now A —1—3+2ﬁ—1:2(1+ﬁ)=2/1 and  p®-1=3-22-1=20-+2)=24,
S0 Zazm = (/12”*2 122 —2) = %(bm)2 when n is odd, and %(bm)2 —2 whennis even,
n n
Thus (Zarj - > a,,, =0 whennisodd/=2 whennis even.
r=0 r=0
Q8  The string leaves the circle at C(—cosé, siné).

Since the radius of the circleis 1, Arc AC= z—t =6 (so cosd =—-cost and sind =sint).
Then B =(-cosd +tsind,sind +tcosd)=(cost +tsint,sint— tcost).

%z—sint+tcost+sint =tcost by the Product Rule; =0 when t=0, (x,y) =(1, 0) or

=1z,0y)= &z, 1). Thisis Xmx S0 to= 17

The required area under the curve and above the x-axis is

A= Iy—dt— I(srnt tcost)tcostdt = _[ ltsin2tdt + Ilt (1+cos2t) dt

by
T L
27 37

using the double-angle formulae for sine and cosine. As the integration here may get very messy,
it is almost certainly best to evaluate this area as the sum of three separate integrals:



37

J.—ltsintht = —tcosZt} —_—
. i 8

V.4 . o 3
J-ltz dt= || " =17
2 6 48

lﬁ

1
27

J. costht—{ltcoszwés.mZt} =
1
2

and Ilt cos2t dt = EtzsinZt}

27[

[N

T

J. tsin2tdt=0- 3z = 3 using a previous answer.
i 8 8
2"

3
Thus A= 'z +37T
48

T .
For the total area swept out by the string during this process (called Involution), we still need to
3

add in the area swept out between t = 0 and t =5z, which is —%-ﬁ-% (there is, of course, no

need to repeat the integration process), and then subtract the area inside the semi-circle. Thus the

3 3 3
total area swept out by the string is I + 3z T A (area inside semi-circle) = z
48 4 48 4) 2 6

Q9

Collisions questions are always popular, as there are only two or three principles which are to be
applied. It is, nonetheless, good practice to say what you are attempting to do. Also, a diagram,
though not an essential requirement, is almost always a good idea, if only since it enables you to
specify a direction which you are going to take to be the positive one, especially since velocity
and momentum are vector quantities. Once these preliminaries have been set up, the rest is fairly
easy. By CLM, 3mu = 2mV, + mVg and NEL/NLR gives e.3u = Vg — Va . Solving these
simultaneously for V and Vg yields Va = u(1 —e) and Vg = u(1 + 2e).

Next, after its collision with the wall, B has speed | f Vg | away from the wall.

For the second collision of A and B, by CLM (away from wall), fmVg —2mVa = 2mW, — mWsg,

and NEL/NLR gives Wa + Wg = e(Va + f Vg). Subst?. for V4 & Vg from before in both of these
equations = 2Wa — Wg = u{f (1+2e)—2(1—e)} and Wa + Wg = eu{(l—e) + f (1+ 2¢)}. Solving
these simultaneously for Wa (not wanted) and Wg then gives Wg = %u{Z(l—ez)— f(1—4e2)}, as
required.

Noting that 1—4e® can be negative, zero, or positive, it may be best (though not essential) to
consider the possible cases separately:
if e=1, Weg=21uf2(3)- f(0)}=2u>0;

if £ <e<l Wg=1 {2(1—e2)+ f(4e2 —1)} >0 foralle, f since each term in the bracket is > 0;
if O<e<%, 1-¢?>32 and Wg> tufi— f(1-4e?)}>1ufi-1x1}>0.




Q10

The maximum height of a projectile is when y=usind—-gt=0 = t= usin @ . Substituting this

g

2 ain?
into y=utsing-igt* > H= % (although some people learn it to quote).

2 ainn 2
When the string goes taut, its length | is given by |= 1 H = us:_nﬁ But | is also given from the
g
y-component of P’s displacement as | = utsind—1gt®, which gives the quadratic equation
2usin 6+ /4u?sin? 6 — 4gH
29
2/2gH +.,/8gH —4gH
= V29 g 9 gn _ é(,/ng i,/gH): \/%(ﬁ—l),where we take the smaller of the
g
two roots since we want the first time when an unimpeded P is at this height.

gt? —(2usin )t + H =0 int. Solving by the quadratic formula, t =

At this time, P’s vertical velocity is v = yzusinﬁ—g\/%(ﬁ—l) = J2¢gH —\/g_H(\/E—l)

=,/gH or u i;ge . Thus, the common speed of P/R after the string goes taut, by CLM, is +./gH
or usiné
242
When the string goes slack, we must consider the projectile motion of R, which has initial velocity
components u cosd — and u;\'?; T . [Note that both P and R move in this way, so P no longer
. o s . , . . . usind, g.,_
interferes with R’s motion.] R’s vertical displacement is zero when y, = ﬁt _Et =0 (t=0)
= t= usi?; (and this is the extra time after the string has gone slack). The total distance
g
travelled by R is thus D = x; + Xz, where x; = ucos@usme(ﬁ—l) and x; = ucos@usme
gv2 gv2
_u’sin@cosé
g

Finally, settingD = H = tand = 2.




Q11 (i) The saying goes that “a picture paints a thousand words” and tis is especially true in mechanics
questions, if for no better reason than it gives the solver a clear indication of angles/directions for

— in this case — the forces involved. The relevant diagrams are as follows:

O A O B O C A
0
Tk Tk Tk A Tsin30°
T U \Y
30y 607
of ] i
P P P 0 @
Vsin60°
U cosé
B C
. _ _ _ _ o 2
It might also be wise to note the sines and cosines of the given angles: tang= J2 = sing = ﬁ
2\2

and cosd = % and tang = ﬁ = sing = 1 and cos¢ =—3 Having noted these carefully, it

is now reasonably straightforward to state that the vector in the direction of PB is
1. V2. 42

U cosé@).cos@i—(Ucosé)sind j+Usindk = ——|—— +—k
—( ) ( )siné j 3 NG

Note that the question requires you to verify that this vector has magnltude 1.

(i) The forces involved are now readily written down .

Ig = —Ei—£ £k U follows from (i)’s answer. Also,
3 V3
To = Tsin30°j+T cos30°k :%T(j+\/§k),
. o o 1 (2v2. 1.
Tc =Vsin60°cos¢gi—Vsin60°sing j+V cos60°k = =V| —i—-—=]+k

and W=-Wk.

(iii) Having set the system up in vector form, the fundamental Statics principle involved is that
TatTegt+Tc+W=0.
Comparing components in this vector equation gives

(i) o—%u +§V=o =U=V6
5V3

() %T */;U—iv 0 = (using U = V\/_)T_—v
5f

(k) ET \/36 EV =W = (using U = V\/_andT_TV)

2
PWAB WiE W
3 5 5




Q12 Itis important in these sorts of contrived games to read the rules properly: in this case, you must
ensure that you are clear what is meant by ‘match’, ‘game’ and ‘point’. Then, a careful listing of
cases is all that is required.

(i) P(re-match) = P(XYX) + P(YXY) = p(1 - p)* + (1 - p)* = (1 - p)*.
P(Y wins directly) = P(YY) + P(XYY) = (L—p)p + p(L - p)p = p(L - p)(1 + p) or pll—p?).
Thus, P(Y wins) =w = p(l— p2)+ w(l— p)?, and you will note the way starting the match again
leads to a recurrent way of describing Y’s chances of winning. Re-arranging this then gives
= plt—p’) = plt—p?) = plL—p’) _l-p for p=0.
1-t-p)° @-@-p)+@-p) p@-p 2-p
— 2 — — —
Next, w—1 = 2(1 P ) (2-p) _ pl-2p) ,and since 2-p >0, w—% has the same sign as
2(2-p) 2(2-p)
1-2p andhenceas +—p.Hence, w>1 if p<1 and w< 3 if p> 1.
To be fair at this point, the final demand of part (i) ended up being rather less demanding than was
originally intended, as the answer is either “Yes” or “No” ... though you would of course, be
expected to support your decision; no marks are given for being a lucky guesser! The following
calculus approach is thus slightly unnecessary, as one can simply provide an example to show that
w can decrease with p. The following, more detailed analysis had been intended.
aw  (2-p)(-2p) -1 p? -1 1 1
dw_@-p2p)-(-p kD L 1 (g L (g og)
dp (2-p) (2-p) (2-p)
Then I 50 for 0<p<2-+3 and W ofor 2-43 <p<l.
dp dp
For a fair game, Y’s expectation should be 0. Thus, using E(gain) = Zgi xP(g;), where gj is the
“gain function” for Y, withw = 3 whenp = £,we have 0= (K)x3+(-1) x5 =>k=14.
When p =0, theresults run YXY ... re-match ... YXY ... re-match ... and the match never ends.
Q13 Firstly, skewness is a measure of a distribution’s lack of symmetry.

(i) For the next part, you should understand how the “expectation” function behaves.
E[(X - )| = E[X®-3ux2 +3u?X — 1*] = E[X?]-3uE[X ? |+ 312E[X]- &

E[X 3]—3,u(0'2 +y2)+ 3u°.u— ° using E[X] = x and E[X?] = & + 1/

E[X 3]—3/102 — 1®, as required.

For a given distribution, this next bit of work is very routine indeed.

1 1 1 .
E[X]:szzdxz[éxi‘}} :%:ﬂ;E[XZ]:I2X3dX:[%X4:| :% N 02=%;and
0 0 0

0

5 1 2_321_8
E[XS]:IZX4 dx = FXS} = Z; all of which then lead to y = *——-#—* = — 22 when
0 5 0 18418 5

substituted into the given (previously deduced) formula.



(ii) Here, F(x) = JX.Zxdx: x> (0<x<1) = FY(x) = Jx (0<x<1)

_FPG)-2F PG+ PR) Gt o 3-2V5+41_4-25

%—% 3-1 2

M
M is given by .[Zxdx:%: MZ:% = M:% (OR by M:F‘l(%):%)_
0
32 1
And P:(Sfﬁ):(sﬁ—g.
32

In order to establish the given inequality “chain”, we must show that D > P and P > y(there is no
point in proving that D > 7). One could reason this through by considering approximants to V2

and /5, but care must be taken not to introduce fallacious “roundings” which don’t support the

direction of the inequality under consideration. The alternative is to establish a set of equivalent
numerical statements; for example, to show thatD > P ...

2-45>6J2-9 < 11-45> 62
& 12145-224/5>72 (after squaring, since both sides are positive)

& 54> 224/5 or 27 >11/5 < 729 > 605 (again, squaring positive terms)
and this final result clearly IS true, so the desired inequality is established.




STEP Mathematics 111 2011: Solutions

Section A: Pure Mathematics

1. 0] The differential equation can be solved either by separating variables or using
an integrating factor. In either case, [ C—:i) dx , or the negative of it is required, and this can

be found either by re-writing (i—:i) as 1+ x_-lm or using the substitution, v = x + 1.

Thus the solutionis u = k(x + 1)e*.
(i) The substitution y = ze™* yields % =ze™ —ze™, and
dzy " —x

—a=ze —27'e™* + ze™~.

Substituting these expressions in the differential equation and simplifying gives

((x +1)z" — (x+ 2)z’)e‘x = 0 which is effectively the first order differential equation
from part (i) withu = z'.

So z' = k(x + 1)e*, which is an exact differential (or integration by parts could be used),
z=kxe*+candsoy = Ax + Be™ asrequired.

(iii)  Part (ii)’s substitution gives z"" — %z’ = (x + 1)e* which using the

integrating factor from part (i) gives %z’ = [ 1dx = x + ¢, and thus

y = (x? + 1) + Ax + Be™™. Alternatively, the solution to part (ii) is the complementary
function and a quadratic particular integral should be conjectured, which in view of the cf
need only be y = Cx? + D, yielding the same result.

2. As f (g) =0, qvif (g) = 0, which, when evaluated, gives every term but one to

be an integer, and so, that term, % , must be an integer, and as p and q are integers with no

common factor greater than 1, this can only happen if g = 1, giving the required deduction.

Q) To show that the nth root of 2 is irrational, consider f(x) = x™ — 2, and evaluate
f(1) and f(2), then apply the stem of the question.

(i)  Considering the turning points of f(x) = x3 — x + 1, there can only be one real
root. Evaluating f(—2) and f(—1) and applying the stem gives the result.

(iii)  Considering the graphs of y = x™ and y = 5x — 7, for n > 3, that these cannot
intersect for x > 0 can be observed by noting their signs for 0 < x < 1-4, and their
gradients for x > 1-4. For x < 0, and n even, it is sufficient to consider signs, whereas
for n odd, it is enough to evaluate f(x) =x™ —-5x+7 for x =—-2,and x = —1or — 3,
depending on the case, and then applying the stem. The case n = 2, can be demonstrated by
completing the square and showing that there are no real roots.



Part (i) could be demonstrated by a minor variant to the usual proof for the irrationality of the
square root of 2. Parts (ii) and (iii) could be shown by applying the stem and then
considering the left hand side of each equation for the cases n even and n odd.

3. Considering the quadratic equation pt? — gt + p? = 0, the condition g2 # 4p3
shows, by considering the discriminant, that the roots are unequal. Supposing that

x3 — 3px + q can be written as a(x — )3 + b(x — )3, and equating coefficients
generates the four equations

a+b=1
—3aa—-36b=0
3a%a +3pB%b = —3p
—a3a—B3b=gq

The first pair may be solved simultaneously to give a = % and b = ﬁ .

Substitution yields p = a¢ff and q = aB(a + ) , or alternatively,
af=p and a+p =% and so o and A satisfy tz—%t+p =0 ie pt2—qt+p?=0.

For p=8, q=48,q>—4p3=28+0.
Hence o and S are the roots of 8t? — 48t + 64 =0,ie. t?—6t+8=0and
wlog a =2, f =4, a=2, b=-1.

x—4)3
So x3 — 24x + 48 = 0 can be re-arranged as (Tz) =2
sy s v oo _2e-V2) 2(-0¥) 2(z-0?iR)
As w3=1, x_z—\/f, w2, w22 andso x = o o

If g =273 and p =12, q? = 4p3 so the first part cannot be used.
However, x3 — 3r2x + 2r3 = 0 can be readily factorised as (x — r)?(x + 2r) = 0 and so
x = r (repeated) or —2r

4, Q) foaf(x)dx is the area between the curve y = f(x), the x axis, and the line x = a
fob f~1(y)dy isthe area between the curve y = f(x), the y axis, and the line y = b .

The sum of these areas is greater than or equal to the area of the rectangle, with equality
holding if b = f(a).

A
(i)  With (x) = xP~1, the sum of the two integrals is %ap + %bp—l



But as % + i =1, i = ijl , and so the required result follows by applying the result

of part (i).
If b =aP~1, simple algebra shows a = b971, so %ap + %bq = %ab + %ba = ab and
equality is verified.

(iii)  f(x) = sin x satisfies the conditions of part (i)

So foaf(x) dx = 1—cosa, and, by parts, fobf—l(y)dy —bsin"'b+vVi—=0Z -1
which together give the required result.

Choosing a =0,and b =t~1, part (i) gives 0 <t sin"*(t71) + V1 —t~2 — 1 which
can be re-arranged to give the required result.

S.
r2df = (x* + y?) % (tan‘1 G)) dt = (x% + y?) — ) dt = (xd—y - yd—x) dt

1+(%)2 x2 dt dt

and hence integrating gives the result.

Ais(x —acost,y —asint)and Bis (x + bcost,y + bsint)

[A] = %fozn(x —acost) (% — acos t) —(y —asint) (% + asin t) dt using (*) which
leads directly to [A] = [P] — af + ma?.

Replacing —a by b gives [B] = [P] + bf + mb?

As [A] = [B], these expressions can be equated to give f = m(a — b) .

The area between curves C and D is [A] — [P] = —af + ma? which by substitution gives
mab as required.

6. Using the substitution ¢ = tanh (%) , then it can be shown that T = U , by making

use of 2 sinh (E) cosh (3) = sinh u to obtain the integrand, and tanh~!¢ = ~In (ﬂ) to
2 2 2 1-t
obtain the limits.
If instead, integration by parts is used differentiating tanh~! t and integrating % ,and
1
employing tanh™1t = %ln (%) to demonstrate that [tanh™ tInt]} =0, T = V.
3

The substitution t = e~2* can be used to demonstrate that T = X .

(Alternatively, starting from U, the substitution u = 2 tanh™! ¢ obtains U =T , the
substitution u = —Inwv obtains U =V, and the substitution u = 2x followed by integration
by parts yields U = X ; starting from V, by parts it can be shown that V = T, using the
substitution v = e * that ¥V = U, and the substitution v = tanh x that VV = X ; or starting

from X, the substitution x = —%lnt gives X =T, integration by parts gives X = U , and
the substitution x = tanh™! v gives X =V )

7. (i) The induction requires Ty;, = Ag4z + Brizv/ala + 1) and
Apiz® —a(@a+ DBy,> =1 .

Tesz = (A + Bifa@+ D) (Va+1+va) = (A +Bw/ala+ D)T,



T,=(2a+1+2/ala+1)) andso 4, =2a+1and B, =2, and
A* —a(a+1)B,% = (2a+ 1)? —a(a + 1)22 = 1 the result is true forn = 2.

Evaluating Tj.,, using (Ak + By+Ja(a + 1)) T, then Ag,, = (2a + 1)A; + 2a(a + 1)By,
and By,, = 24, + (2a + 1) By, , and so substituting and simplifying,
Apir” —ala + 1DBy,,? = A — a(a + 1)B,* = 1 by the induction.

(i) Ty=(a+1+Va)Ty =(Va+1+a)(An+Bnfala+1D)

= (4,, + aB,)Va + 1 + (4,, + (a + 1)B,)v/a which is of required form because
C, =A, +aB, and D, = A,, + (a + 1)B,, are integers and

(a +1)C,* — aD,? = (a+ 1)(Ap + aBp)? — a(4,, + (a + 1)By,)?

=A% —aa+1)B,%* =1 as required.

Trivially the case n = 1 is true.

(iii)  Inthe case that n is even,

T, =A,+Byjala+1) = \/Anz + \/a(a +1)B,* = \/a(a +1B,*+1+ \/a(a + 1)B,*

as required,

and in the case that nis odd, T, = C,v/a + 1+ D,\a = \/(a +1)C,% + \/aDnZ =

\/aDnZ +1+ \/aDnz as required.

_ . 1+i(x+iy) 2x . x2-(1-y?) . .
8. w=utiv=r = oo T iy U9 the complex conjugate, so
_ 2x _ x%—(1-y?)
u= x%+(1+y)? and v = x%+(1+y)?

() fx=tanZ y=0then u=sin6, and v =—cos, using the general
result and so u? + v? = 1 but the point 8 = m i.e. (0,1) is not included.

(i) If —1<x<1,and y =0 ,thenitisthe same locus as (i) except —g <0< g
and so it is the semi-circle that is the part of u? + v = 1 below the u axis.

@iii) x=0 ,thenu=0 andv = i—: ,and as —1 < y < 1 which is that part of the v

axis below the u axis, i.e. —0o < v < 0.

(iv) Letx=2tan§ and y=1,s0as —o<x <o, —mr<68<m,then

1. _1 . . 12 _ (1)?
u=-sinfand v=7(1 - cos8), so the locus is the circle u? + (v —5) = (5)

excluding the point © = 7, which is (0,1) .



Section B: Mechanics

9. For the initial equilibrium position, suppose 8 = a , considering potential energy,
with potential energy zero level at O, U = 4mgacos @ + 3mgasin@ + c, for

equilibrium, Z—Z =0,qgiving tana = %.
Then conserving energy,
4mgacos 0 + 3mgasinf + % 7m (aé)z = 4mga cos a + 3mga sina which having

substituted for a gives 7a (6?)2 + 8gcosf + 6gsinf = 10g

Q) Resolving radially in general for Q, if R is the contact force,
4mgcos6 — R = 4mab? ,sowhen 6 =B, R =0,andthus 4mg cosp = 4mabh?
and so substituting for 82 and @ in the energy result gives 15cosf + 6sin = 10.

(i) Resolving tangentlally for Q, 4mgsin® — T = 4maf and for P,
T — 3mg cos @ = 3maf so eliminating 6 between them and re-arranging,

T = 7mg(sm9 + cos @) as required.

10. Suppose Q is displaced x and P is displaced y, and let A = % maw? ,

then mi = M— and my = M
Adding and mtegratlng leads to x + y =ut.
Subtracting gives y — ¥ = —w? (y —x)andso y — x = % sin wt from solving the

differential equation and employing the initial conditions that when=0, x =y =0,x =0,
and y=u.
Thus, x = = (ut — Zsinw t) and y = = (ut + Zsinw t) . When the string next

2 w 2 w
returnsto lengtha, y —x = % sinwt=0, wt=mandso x =y = % % 7 as required.
Soatthistime, x =u,and y=0.
The total time between the impulse and the subsequent collision is g + % .

11.  On the one hand the distance between the point on the disc vertically below (a, 0,0)
and P is b sin ¢ as the string length b makes an angle ¢ with the vertical. On the other, it is

2a sin%@ , the third side of an isosceles triangle with two radii a at an angle 6 , and hence the

required result.
The horizontal component of the tension in each string is T sin ¢ and it acts at a

perpendicular distance a cos % 6 from the axis of symmetry. Thus the couple is
nT sing a cos%@ . Resolving vertically, n T cos¢ = mg . Substituting for T in the

expression for the couple and then using bsin¢ = 2a sin%@ to eliminate ¢ , gives the

required result.
The initial potential energy relative to the position where the strings are vertical is

mgb(1 — cos ¢p) . This is converted into kinetic energy % % ma? w? . Equating these

expressions and once again using bsin¢ = 2a sin%@ to eliminate ¢ , gives the required
result.



Section C:  Probability and Statistics

12 As Gy(t) = G(H()),G'y(®) = G'(H®) x H'(t),andasH(1) =1, H'(1) =
E(X;), G'(1) = E(N),and G'y (1) = E(Y), the first result follows.

similarly, 6"y (t) = G"(H(®) x (H'(®))* + ¢'(H(®)) x H'(t) , and

Var(Y) = 6"y(1) + 6'y(1) - (6'v(D)’

= ¢"(HD) x ( H'(D) + ¢'(HQ)) xH'(1) + E¥) — (EX))*

= (Var(N) +(EV))* —E(N)) x (EX))" + E(N) x (Var(Xi) + (Ex))" -

2
E(X)) + EQVN) E(X) — (EW) E(X))
= Var(N) x (E(X)* + E(N) x Var(X;) as required,
A fair coin tossed until a head appears is distributed Geo G) so G(t) = i . The PGF for

the number of heads when a fair coin is tossed once is % + %t . Thus Gy (t) = g .
@

P(Y =r), being the coefficient of t" in G, (t),is 3:% forr > 1, and %for r=0 .

13 0 P=n=(O) =) pa=r+n=( )T

n n r+1 n n
PX=r+1) _ k7 b The most probable value of X is the minimum value of r such
P(X=r) r+1n-b

k-r b . . .
that :IE < 1, because this expression decreases as r increases. All the factors are

2
Using the results E(Y) =2 X %: 1,and Var(Y) = X G) +2 X i =1.

and so

positive so it is simple to rearrange the algebra to obtain r > @b —1 sor= [% bJ :

. . . k-r b . .
The answer is not unique when there is a value of r such that ﬁ—b = 1, in which case,

=2 p , which will only happen if n divides (k + 1)b .
PGy
r/\k—-r

n ’
o ()
P(X =r+ 1) — (T+1)(kr—l;—1) and S0 P(X=r+1) — E b—r

(Z) ! P(X=r) r+1 n-b—(k-r)+1 "’

Again, the most probable value of X is the minimum value of r such that
k-r b-r .. _ |+ (b+1) .. . . ..
v T <1,giving r = [—(n+2) J , and this is not unique if (n + 2) divides

(k +1)(b + 1).

(if) Using the same strategy as for part (i) , P(X = 1) =
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